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Abstract. Collaborative filtering (CF) has become one of the most popular and
widely used methods in recommender systems, but its performance degrades
sharply in practice due to the sparsity and bias of the real-world user feedback
data. In this paper, we propose a novel counterfactual data augmentation frame-
work AD-AUG to mitigate the impact of the imperfect training data and empower
CF models. The key idea of AD-AUG is to answer the counterfactual question:
“what would be a user’s feedback if his previous purchase history had been dif-
ferent?". Our framework is composed of an augmenter model and a recommender
model. The augmenter model aims to generate counterfactual user feedback based
on the observed ones, while the recommender leverages the original and counter-
factual user feedback data to provide the final recommendation. In particular,
we design two adversarial learning-based methods from both “bottom-up" data-
oriented and “top-down" model-oriented perspectives for counterfactual learning.
Extensive experiments on three real-world datasets show that the AD-AUG can
greatly enhance a wide range of CF models, demonstrating our framework’s ef-
fectiveness and generality.

Keywords: Counterfactual augmentation - Collaborative filtering - Recommend-
ing systems.

1 Introduction

With an unprecedented number of products and services available on online platforms,
it becomes challenging and time-consuming for users to discover interested products
from overwhelming alternatives. Recommender systems have become essential tools to
solve this information overloading problem by generating a personalized recommenda-
tion list for different users. Especially CF-based methods (e.g., matrix factorization[15]),
which have been extensively used for recommendation, assuming users who have made
similar choices tend to have similar preferences in the future.
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Fig. 1: An illustration of our framework for counterfactual data-augmented recommendation. The
picture of each product is downloaded from https://www.amazon.com/, and the categories of the
products are also presented for reference.

The core of CF methods are how to parameterize users and items with effective
feature vectors based on their observed historical interactions. Notably autoencoder ar-
chitecture, which has served as an effective solution for dimensionality reduction by
learning underlying patterns from the interaction data between users and items, has re-
cently applied to CF with strong performance improvements over several competitive
approaches. CDAE [29] utilizes a denoising autoencoder by mapping user feedback to
embeddings for reconstructing the user’s preference. MultVAE [16] subsequently im-
proves CDAE by extending model to variational autoencoders (VAE) and the likelihood
to multinomial distributions. MacridVAE [18] further employs VAE to learn disentan-
gled representations representing different user intentions.

These pure CF methods are quite efficient and effective to obtain satisfactory rep-
resentations relying on the original user-item interaction data. Unfortunately, in real-
world applications, most users can only access a limited number of items with large
bias, as a result, pure CF can hardly capture these users’ preference. Figure 1 illustrates
a toy example for the product recommendation scenario. We may observe that a user
has clicked Lipsticks and Skin care products influenced by the products’ popularity in-
stead of her own interest in original data. Meanwhile, although this user is in need of
makeup tools and accessories, these data may not be recorded for various reasons. From
the perspective of causal inference, these unrecorded data provide a key counterfactual
question: “What would be a user’s feedback if his previous purchase history had been
different?". As a significant complementary resource of the observed user-item interac-
tions, the counterfactual data can more comprehensively reveal the user preference.

Motivated by the above observations, we propose a novel adversarial data aug-
mentation autoencoder model (called AD-AUG) for counterfactual recommendation.
In general, our framework is composed of two parts (see Figure 1), an augmenter model
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and a recommender model. For the target user, the augmenter model generates coun-
terfactual interaction data from the original ones, the recommender model is trained
based on the original and counterfactual data to provide the final recommendation list.
When building the counterfactual data from the augmenter model, we develop two
types of adversarial learning-based model called data- and model-oriented methods,
respectively. The data-oriented method first generates counterfactual data as different
as possible from the original interaction data. Then, the model maximizes the corre-
spondence/mutual information between the representations of the original interaction
data and its augmentation in the recommendation process. While for the model-oriented
method, the model adopts the principle that samples with larger loss can usually provide
more knowledge to widen the experience and aims to generate counterfactual data that
maximizes the information provided to the recommender model.
To summarize, in this paper we make the following contributions:

— We propose a novel adversarial training framework to empower recommendation
models with counterfactual data and our framework can support a wide range of
different CF models.

— We implement the above idea in two ways by developing the augmenter from both
data and model perspectives to generate the counterfactual data for the recommender.

— We conduct experiments on three real-world datasets to evaluate the proposed ap-
proach. Experimental results show the effectiveness and generality of our framework.

2 Related Work

2.1 Autoencoder-based CF

Autoencoder (AE) has emerged as an important architecture to enable the CF tech-
niques by mapping user-item interactions into latent low-dimensional representations.
The goal of AEs are to minimize the reconstruction error for the user’s feedback vec-
tor [23]. As the variants of AE, denoising autoencoders (DAEs) [27] and VAEs [14,22]
are widely used for CF. CDAE [29] utilizes a DAE by corrupting the input feed back
vector randomly. MultVAE [16] extends VAE to CF with multinomial distribution in
the likelihood. MacridVAE [18] employs VAE to learn disentangled representation rep-
resenting different interests of the user. RecVAE [24] proposes a new composite prior
for training based on alternating updates to enhance performance. Our framework aims
to design two leaning-based intervention methods to improve AE-based CF from two
inseparable aspects, i.e., “data" and “model".

2.2 Counterfactual Data Augmentation

Counterfactual thinking is a concept describing the human introspection behaviors with
typical question: “what would ... if ...?". It has been recently leveraged to alleviate the
training data insufficiency problem in the machine learning community, e.g., computer
vision [2,3,6] and natural language processing [33]. For recommendation, CASR [28]
generates counterfactual user behavior sequences for sequential recommendation. To al-
leviate the problem of extreme sparse and imbalanced training data, CPR [32] simulates
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user preference and generates counterfactual samples. Instead of generating counterfac-
tual data and make recommendation in separate two steps, our work focuses on learning
counterfactual data augmentation as well as recommendation process in one union step
with adversarial training.

2.3 Adversarial Training

The basic idea of adversarial training is to introduce an opponent part into the model
optimization process, where two models try to detrimentally influence each other’s per-
formance and as a result, both models improve by competing against each other. Ad-
versarial training [5] has demonstrated their abilities and potentials on a number of ma-
chine learning applications, such as image generation [12,31], language generation [17],
graph representation learning [30] and robust recommender system [9]. Recently, there
are some works [25] trying to combine information theory [10,26] to adversarial train-
ing. Apart from leading the training target, in this paper, we borrow the idea of adver-
sarial training to data augmentation. The generator serves as a counterfactual data aug-
menter that samples challenging user interactions to optimize the recommender model.

3 Preliminaries

3.1 Problem Definition

Given a set U of M users and a set Z of [V items, we have a binary rating matrix X €
{0,1}M*N "where z,,; = 1 indicates that user u explicitly adopts item i, otherwise
xy,; = 0 and it indicates a missing feedback. Given a user u, z,, = {z, ;i € T}
represents user u’s history feedback vector. The goal is to learn a recommendation
model A with z,, as input to infer user u’s preference score and retrieve a ranked list
of the top-V items that u prefers the most. However, accurately estimating .4 usually
suffers from the data sparsity and selection bias problems. Therefore, for user u, we aim
to generate sufficient “real" interaction data z,, to augment z,,.

3.2 Autoencoder CF Framework

A standard AE is trained to reproduce the input data in an output layer via a compressed
latent representation. The encoder part of the framework encodes the input x,, to a d-
dimensional latent representation z,,. And the decoder part of the framework takes z,,
as input and outputs the reconstructed user feedback.

Zy = f(xu)yx; = g(zu), (D

where f(.) and ¢(.) are encoder and decoder network respectively, which can be multi-
ple layers neural network. And the optimization loss can be defined as,

Lap(A(z,)) = d(z), x.), )
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where d(., .) is the reconstruction loss. Instead of outputting the latent vectors, the en-
coder of VAE outputs user representation with a prior distribution. And the optimi-
sation objective is the evidence lower bound to estimate the intractable marginal log-
likelihood. For a single user u, we have:

logp(zy) > Ly ap(A(zy)) =

(3)
Ezqu(zu|7;u) Ing(xu|Zu) - ﬂKL(Q(Zu|Iu)Hp(Zu))7

where K L is the Kullback-Leibler divergence distance measuring the difference be-
tween the prior distribution p(z,,) and posterior distribution ¢(z, |z, ) parameterized by
encoder function f(.), p(x,|z,) is the generated distribution conditioned on z,, param-
eterized by decoder g(.). [ is the regularization hyperparameter that balances the latent
channel capacity (i.e., reconstruction accuracy) against independence constraints [10].

4 The Proposed Model

4.1 Model Overview

Inspired by the human introspection behaviors, the basic idea of our proposed model is
to remove redundant information from u’s positive feedback Z;" = {i € Z|z,; = 1}
and add pseudo information from missing feedback Z,, = {i € Z|z,; = 0} for the
recommender learning. As shown in Figure 2 and Figure 3, beyond training a recom-
mender model A, our AD-AUG framework introduces an augmenter model S with the
same model structure as A, to answer the counterfactual question by generating coun-
terfactual user feedback data. For the target user u, we use feed back vector x,, as input
of &, and the produced counterfactual interaction vector Z,, are leveraged to optimize
A. We implement the model from both model and data perspectives, which will be
introduced in the following contents.

4.2 Data-oriented Counterfactual Learning

As redundant especially incorrect user’s feedback in data causes troubles for models to
identify user’s true preference. We introduce information bottleneck (IB) [10], which is
a common practice in contrastive learning [4,30], that requests the model to capture the
minimal sufficient information for recommendation. For the target user v, IB minimizes
the information from the original feedback data x,, while maximizing the information
for recommendation to remove redundant information as well as noises. As the mis-
leading information gets removed, the model learnt by IB tends to be more robust.
Formally, we learn data-oriented counterfactual model with min-max principle,

mjnmgxﬁ(A(mu)) = M(Af(zu), Ap(S(z4))),s )

where £(.A(z,,)) denotes the loss of the recommender model with ., as input and the
loss canbe L4z (-) or Ly 4g(-) depending on the recommender model. Ay denotes the
encoder part of the recommender model, S(z,,) denotes the outputs of the augmenter
model, I(As(x,), As(S(x,))) denotes the mutual information between the original
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Fig. 2: The schematic view of the Data-oriented method.

user’s feedback x,, and the augmented user’s feedback Z,,, A is the hyper-parameter to
balance the mutual information and the loss.

Given the optimization target, both models are thus trained in adversarial style. Dur-
ing each iteration, the recommender model .4 tends to maximize the mutual informa-
tion between latent representation and target labels, i.e. to minimize £(A(z, ), while
minimize the mutual information between the generated and the original data, i.e., to
maximize I(Af(zy), Af(S(xy))). On the other hand, the augmenter model S is en-
couraged to generate hard negative samples, i.e., to minimize I(Af(zy), Af(S(zy))),
to be distinguished from original data.

Specifically, we adopt InfoNCE as the estimator [21] for mutual information, which
is known to be a lower bound of the mutual information and is frequently used for
contrastive learning. Formally, during the training, given a minibatch of b users, let
zu1 = h(Af(z,)) and 2,2 = h(Af(S(xy))), where h(.) is the projection head imple-
mented by a 2-layer MLP as suggested in previous work [4]. We estimate the mutual
information I for the minibatch,

z”: exp(sim(zy,1, 2u,2)) 5)

Zu’*l ' £ exp(sim(zu’l, Zu/,Z)) ,

where simy(., .) denotes cosine similarity.

4.3 Model-oriented Counterfactual Learning

Besides augmenting user’s feedback from the data perspective, we leverage the loss
of the model to augment user’s feedback from the model perspective. Motivated by
the previous work [6,7,1], which follows the principle that samples with larger loss
can usually provide more knowledge to widen the model’s experience and improve the
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<

performance. In the model-oriented method, we learn the counterfactual feedback data
via maximizing the loss £ of the recommender.
Formally, we learn the model with min-max principle defined as follows,

rnfiln max L(A(S(zy))), (6)

where L£(A(S(x,,))) denotes the loss of the recommender with augmented user’s feed-
back S(x.,), i.e., T, as input, and the loss can be L 4 (+) or Ly 4g(+) depending on the
recommender model.

4.4 Implementation of Augmenter Model

For the user’s feedback data x,,, we introduce a practical instantiation of the augmenter
model S. The goal of S is to remove redundant information from u’s positive feedback
Z.; = {i € I|z,,; = 1} and add pseudo information from missing feedback Z, = {i €
Z|x,,; = 0}. Specifically, each positive/missing feedback ¢ of user u will be associated
with a random variable p,, ; ~ Bernoulli(w,_;), where w,, ; denotes the probability of
the occurrence of the interaction between u and . For positive feedback, (u, %) is kept
if p,,; = 1 and dropped otherwise. For missing feedback, (u, i) is added as pseudo
feedback in &, if p,, ; = 1 and kept missing otherwise.

We parameterize the Bernoulli weight w,, ; by leveraging another AE-based CF
framework, i.e., the augmenter S, to take x,, as input to get w,. In order to train S
in an end-to-end fashion, we relax the discrete p,, ; to be a continuous variable in [0, 1]
and utilize the Gumbel-Max reparameterization trick [13]. Formally,

logo —log(l — o) + wy;

Du,i = Sigmoid(
-

) @)

where o ~ Uniform(0, 1), 7 is the temperature hyper-parameter.

Meanwhile, a reasonable augmenter model S should keep a certain amount of infor-
mation from original user feedback. Hence, we regularize the ratio of feedback being
changed per user by enforcing the constraint defined as,

szu zwuz+ — Ty, z)(l *Wu,i) (8)
e = ] |I+| + |7 | '

uel 1




8 Y. Wang et al.

Algorithm 1: Learning Algorithm of AD-AUG

Input: Training user binary rating matrix X € {0, 1}M xN
Initialize: Models A and S to different initial conditions, 7 < 0
while ¢« <MaxlIteration do

1 Sample one batch user feedbacks from X;
2 | Assign « to control changed feedback amount ; // Eqg.1l1
3 Learn the counterfactual user feedback Z,, by S ; // Eq.7
4 | Data-oriented Method:
5 Encode x,, and Z,, to learn mutual information I;
if %2 = 0 then
6 ‘ Update S by maximizing =Y +aLseg;
else
7 ‘ Update A by minimizing £—\ ; // Eq.9
end

8 Model-oriented Method:
if %2 = 0 then

9 ‘ Update S by maximizing £+ aLreg;
else
10 | Update .A by minimizing £ ; // Eq.10
end
11| i+i+1;
end

4.5 Curriculum Adversarial Learning

By adding the constraint, the final objectives for the two counterfactual learning models
are as follows. For data-oriented counterfactual learning, we have:

mj‘n mgxﬁ(A(:cu)) —M(Af(xy), Af(S(xn)))+0Lreg, )

where « is the hyper-parameter to control the amount of user-item interaction changed
from the original feedback. And for model-oriented counterfactual learning, we have:

mjn max LA(S(xn))) + aLseg. (10)

In order to learn A and S, we propose a curriculum learning method on the designed
coursed, via an easy-to-difficult process. Specially, an annealing mechanism is applied:

a=pry", (11)

where p is the initial weight, v denotes the decay ratio, and & denotes the current cur-
riculum number. In this way, as the learned courses becomes difficult, i.e., the amount
of changed feedback increase, the learned model can be gradually improved. The com-
plete learning algorithm of our framework is shown in Algorithm 1.
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Dataset ‘ ‘#Users ‘ #ltems ‘ #Interactions ‘ Sparsity
ML-1M || 6,040 | 3,706 | 1,000,209 | 4.47%
A-Music || 5,541 | 3,568 | 64,706 | 0.33%

A-Beauty||22,363[121,01| 198,502 | 0.07%

Table 1: Descriptive statistics of four datasets. Amazon-Digital Music and Amazon-Beauty are
simplified as A-Music and A-Beauty.

Datasets MovieLens-1M A-Music A-Beauty
Metrics R@20 R@50 N@100| R@20 R@50 N@100| R@20 R@50 N@100
WMF 0.1072 0.1977 0.1492|0.1722 0.2534 0.1295 | 0.0532 0.0867 0.0435
SLIM 0.1153 0.2037 0.1589 | 0.1578 0.2003 0.1106 | 0.0166 0.0194 0.0129
CDAE 0.0929 0.1718 0.1410| 0.0750 0.1366 0.0671 | 0.0267 0.0491 0.0232
D-CDAE |0.1044 0.1868 0.1466 | 0.0885 0.1541 0.0748 | 0.0319 0.0571* 0.0271*
M-CDAE  [0.1052* 0.1891* 0.1477%#|0.1061* 0.1767* 0.0872%0.0323* 0.0551 0.0269
MultDAE | 0.1095 0.2060 0.1616 | 0.2021 0.3208 0.1566 | 0.0747 0.1224 0.0580
D-MultDAE |0.1142* 0.2164* 0.1657 |0.2160* 0.3350* 0.1628*| 0.0784 0.1270 0.0600
M-MultDAE | 0.1128 0.2114 0.1636 | 0.2111 0.3326 0.1603 {0.0791* 0.1288* 0.0611*
MultVAE | 0.1132 0.2142 0.1659 | 0.2062 0.3241 0.1579 | 0.0782 0.1245 0.0588
D-MultVAE | 0.1167 0.2169 0.1681 | 0.2178 0.3398* 0.1648*| 0.0786 0.1281 0.0605
M-MultVAE | 0.1180 0.2196* 0.1697%*|0.2192* 0.3354 0.1643 | 0.0793 0.1294* 0.0609*
MacridVAE | 0.1130 0.2167 0.1658 | 0.2413 0.3626 0.1803 | 0.1036 0.1559 0.0753
D-MacridVAE| 0.1176 0.2220% 0.1691 |0.2485* 0.3716* 0.1861*%| 0.1082 0.1642 0.0790
M-MacridVAE |0.1185% 0.2215 0.1707%| 0.2478 0.3699 0.1844 |0.1087* 0.1652* 0.0796*

Table 2: Results of effectiveness experiments on four different datasets. We use “D-X" and “M-
X" to represent the data- and model-oriented counterfactual learning when the backbone model
is “X". Statistical significance of pairwise differences of AD-AUG vs. the backbone model is
determined by a paired t-test (* for p < 0.01).

S Experiment

5.1 Experimental Settings

Datasets. We validate the proposed framework on three public available datasets. In
specific, MovieLens is a widely used benchmark dataset in movie recommendation, we
conduct experiments on a widely used subset of this dataset, MovieLens-IM. Amazon
is a widely used benchmark dataset for product recommendation [8]. We select Digital
Music and Beauty subsets from the collection. For each dataset, we treat each review
as an interaction between the user and item to transform the it into implicit data. The
statistics of the datasets are summarized in Table 1.

MovieLens: https://grouplens.org/datasets/movielens/
Amazon: http://jmcauley.ucsd.edu/data/amazon/


https://grouplens.org/datasets/movielens/
http://jmcauley.ucsd.edu/data/amazon/

10 Y. Wang et al.

Baselines. To demonstrate the effectiveness, we compare AD-AUG with the following
representative models.

— WMF [11] is a weighted matrix factorization method, which decomposes the implicit
user feedback similar to SVD but with confidence weights defined as number of times
user interacted with item.

— SLIM [20] learns a sparse matrix of aggregation coefficient that corresponds to the
weight of rated items aggregated to produce recommendation scores.

— CDAE [29] is an AE-based CF model which uses a demonising autoencoder for
recommendation.

— MultDAE [16] extends CDAE by using a multinomial likehood for the data distribu-
tion.

— MultVAE [16] is a VAE-based CF model which uses a multinomial likelihood for
VAE to improve the recommendation performance.

— MacridVAE [18] employs VAE to learn disentangled representation representing
different interests of the user.

Evaluation Metrics. For each user of the dataset, we rank the interactions in chrono-
logical order and select the first 80% of historical interactions as the training set with
the remaining 10%, 10% as the validation and test set respectively. For testing, we
regard all unrated items as candidates and employ three metrics, Recall (R)@K with
K € {20,50} and Normalized Discounted Cumulative Gain (NDCG or N)@K with
K =100, which are computed based on rank of test interactions in top-/ ranked list.

Implementation Detail. We implement our AD-AUG in Pytorch. The embedding size of
user representation is fixed to 100 for all experiments. The encoder and decoder consist
of two layers with [500, 300] and [300, 500] respectively, each with ReLU activation.
For our method, the hyper-parameter 7 = 1.0, 5 = 0.2, v = 0.99, and dropout with
probability p = 0.5 is employed to the input. We set A = 1.0 and the initial value p = 10
for data oriented method while p = 1000 for model oriented method in curriculum
adversarial learning. We optimize AD-AUG with Adam optimizer with the learning rate
as 0.001 to both augmenter and recommender and using early stopping with a patience
of 50, i.e. we stop training if NDCG@ 100 on the validation set does not increase for 50
successive epochs. For baseline methods, we split exactly the same training, validation
and test set as AD-AUG and apply a gird search for optimal hyper-parameters.

5.2 Experimental Result

Overall Comparison. We summarize the results by comparing the performance of all
the methods. As shown in table 2, MacridVAE performs best among all the AE-based
CF methods, which demonstrates the effectiveness of disentangled representation mod-
eling different user interests for recommendation. Meanwhile, compared with these
baselines, the data- and model-oriented models have achieved a significant improve-
ment over all datasets, especially model-oriented method. This is actually not surpris-
ing, since the counterfactual user feedback generated from the model-oriented method is

The implementations are available at https://github.com/Fangbang/AD-AUG
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Fig. 4: Training dynamics of drop/add ratio in augmented data on Amazon-Beauty.

more targeted, which is tailored for improving the recommender. However, the model-
oriented method is achieved by using the information of the recommender, when the
loss of the recommender model is unavailable (as black box for augmenter), it is better
to use data-oriented method.

The Statistics of Data Augmentation. As there are two proposed methods of data aug-
mentation, we study the augmentation results during whole training process respec-
tively. The ratio of interactions changed by augmenter model is recorded during training
process under the sets of hyper-parameters where each model achieves its best perfor-
mance. As shown in Figure 4, the ratio of generated counterfactual interactions decrease
until they converge during training process. Meanwhile, the ratio differs between data-
and model- oriented methods during the training process. The change ratio of data-
oriented method is significantly higher than model-oriented method on each epoch. On
the one hand, this observation indicates that data-oriented method, which leverages mu-
tual information to augment training data, would prefer more changes on the interaction
data to assist the recommender to extract more information from training data. On the
other hand, the fewer change ratio of model-oriented method means a few interactions
are added or dropped by the augmenter to reach the best performance. This is because
that original user feedback is sparse, and this causes the number of adding/deleting user
interactions from the original feedback small for the model-oriented method.
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Fig. 5: Performance comparison over the sparsity distribution of data on Amazon-Beauty.

The Effect of Data Augmentation. The number of user feedback is an important fac-
tor that affects the recommendation performance since fewer user-item interactions are
insufficient to generate high-quality representations. We study whether our data aug-
mentation methods can alleviate this sparsity issue. Towards this end, we divide the
feedback data of user in the training data into five equal folds and vary the amount of
training data from one fold to four folds, corresponding to 20%, 40%, 60%, 80% of
entire training data as training sets. Figure 5 illustrates the performance w.r.t. different
sparsity distribution of data on Amazon-Beauty, the performance substantially drops
when less training data is used. Meanwhile, we can see our data- and model-oriented
counterfactual learning can enhance the performance of each AE-based CF models,
and the improvements are particularly significant when the user feedback is relatively
sparse (40% to 80% of user feedback). The result indicates that AD-AUG helps improve
recommendation for inactive users by generating the counterfactual user feedback.

Influence of Curriculum Learning. To investigate how the curriculum adversarial learn-
ing affects the performance, we compare the adversarial learning process under three
different annealing configurations: our complete method, our model without annealing
that set o with fixed initial value p (Fixed), our model that randomly set o between
0 to p under each curriculum step (Random). As shown in Figure 6, for the model-
oriented counterfactual learning, the performance has slightly been affected without the
curriculum learning. In contrast, curriculum learning has a more significant effect on
data-oriented counterfactual learning. The best results are attained by considering the
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Fig. 6: Effect of curriculum adversarial learning on Amazon-Beauty.

easy-to-difficult curriculum pattern, which indicates that curriculum adversarial learn-
ing makes the objective smoother, thus more easily reaching the global optimal.

Ablation Study. We conduct an ablation study to verify the effectiveness of the two pro-
posed data augmentation methods. Figure 7 compares the recommender model’s perfor-
mance on Amazon-Beauty when the augmenter model applies only one kind of change
to the original data, i.e., adding or dropping interactions in user’s behavior history. As
shown in Figure 7, model’s performance declines when there is only one kind of change
is applied to the interaction data. The results indicate that both adding and dropping is
required in data augmentation: adding interactions helps the recommender discover im-
plicit feedback from original data, while dropping interactions removes noises from
observed interaction history. The model performance suffers more under w/o drops set-
tings. We suspect that it is because data denoising plays a more fundamental role for
recommender model in terms of discovering user’s true interests, while just adding in-
teractions may lead to more noisy data.

Visualization and Case Study. To further investigate how our counterfactual data aug-
mentation framework facilitates the user representation learning, we visualize the learnt
hidden representations and conduct case study on Amazon-Beauty. We use MacridVAE
as backbone and visualize the high-dimensional user representations learned by Macrid-
VAE and our model. Then we randomly select a user (67) and present this user’s Top-3
add/delete products for the original feedback. As shown in Figure 8, we treat each
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Fig. 7: Ablation study about different types of data augmentation on Amazon-Beauty.

learned disentangle component of a user as an individual point and the k-th compo-
nent is colored according to k. Compared with backbone model, the data- and model-
oriented learning frameworks show different cluster structures, especially data-oriented
method, which can form clearer clusters. Additionally, as the random selected user(67)
mostly focus on nail makeups and relevant tools, the two counterfactual frameworks
remove some of the nail tools and add bath equipment and other makeup products to
the feedback. It indicates that the counterfactual data makes the model learned more
personalized characteristics.

6 Conclusion

In this paper, we propose to improve CF performance by enriching the user feedback
based on the idea of counterfactual thinking. To achieve goal, we design two adversarial
learning-based data augmentation methods to generate the counterfactual user feedback
data for recommendation. Experiments demonstrate that our proposed AD-AUG model
achieves considerable improvement compared with state-of-the-art models.
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Fig. 8: Visualization of the learned t-SNE [19] transformed user representations on Amazon-
Beauty, where the marked stars represent a user (67). And Figure 8d represents the case study of
this user.
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