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Abstract

This paper studies the problem of graph-level clustering,
which is a novel yet challenging task. This problem is critical
in a variety of real-world applications such as protein cluster-
ing and genome analysis in bioinformatics. Recent years have
witnessed the success of deep clustering coupled with graph
neural networks (GNNs). However, existing methods focus
on clustering among nodes given a single graph, while explor-
ing clustering on multiple graphs is still under-explored. In
this paper, we propose a general graph-level clustering frame-
work named Graph-Level Contrastive Clustering (GLCC)
given multiple graphs. Specifically, GLCC first constructs an
adaptive affinity graph to explore instance- and cluster-level
contrastive learning (CL). Instance-level CL leverages graph
Laplacian based contrastive loss to learn clustering-friendly
representations while cluster-level CL captures discrimina-
tive cluster representations incorporating neighbor informa-
tion of each sample. Moreover, we utilize neighbor-aware
pseudo-labels to reward the optimization of representation
learning. The two steps can be alternatively trained to col-
laborate and benefit each other. Experiments on a range of
well-known datasets demonstrate the superiority of our pro-
posed GLCC over competitive baselines.

Introduction
Clustering is a fundamental problem in graph machine learn-
ing, which has been widely studied for decades. It aims at
partitioning similar samples into the same group and dis-
similar samples into different groups. The clusters of sam-
ples provide a global insight of the whole dataset, which has
various downstream applications, including anomaly detec-
tion (Sheng et al. 2019), domain adaptation (Tang, Chen, and
Jia 2020), community detection (Liu et al. 2020) and repre-
sentation learning (Xu et al. 2021; Luo et al. 2022b).

Over the past decades, traditional methods such as spec-
tral clustering (Ng, Jordan, and Weiss 2001) and subspace
clustering (Vidal 2011) have played a dominant role. How-
ever, the separation of representation learning and cluster-
ing unavoidably leads to sub-optimal solutions. Due to the
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strong representation learning capability of deep learning,
deep clustering approaches (Caron et al. 2018; Mukherjee
et al. 2019; Li et al. 2021; Zhong et al. 2021; de Mello,
Assunção, and Murai 2022) have recently achieved state-of-
the-art performance. The crucial characteristic of deep clus-
tering is to learn clustering-friendly representations with-
out manual feature extraction via deep neural networks in
an end-to-end fashion. Representative method DeepClus-
ter (Caron et al. 2018) iteratively groups the features with
k-means and uses the cluster assignments as supervision to
update the deep neural networks. With deep clustering, rep-
resentation learning and clustering can be optimized in a
joint way to learn clustering-friendly representations.

With the advancement of graph neural networks (GNNs)
in achieving unprecedented success for graph-related tasks,
one promising direction to leverage GNNs is graph cluster-
ing (Bo et al. 2020; Cheng et al. 2021; Peng et al. 2021;
Zhao et al. 2021; Pan and Kang 2021; Liu et al. 2022). The
basic idea of graph clustering methods is to train GNNs for
learning effective cluster assignments to divide nodes into
different groups without human annotations. Specifically,
SDCN (Bo et al. 2020) firstly integrates the structural in-
formation into deep clustering combined with autoencoder
and GCN. To avoid representation collapse caused by over-
smoothing in GCN, DCRN (Liu et al. 2022) proposes a self-
supervised deep graph clustering method by reducing infor-
mation correlation in a dual manner.

Although existing graph clustering approaches have
achieved encouraging performance, they all focus on study-
ing clustering among nodes given a single graph. In other
words, they are tailored to node-level clustering. Neverthe-
less, to the best of our knowledge, clustering on multiple
graphs (also called graph-level clustering) remains largely
unexplored, and has a variety of real-world applications. For
example, protein clustering is a significant topic in bioin-
formatics, which is used to construct meaningful and stable
groups of similar proteins to be used for analysis and func-
tional annotation (Zaslavsky et al. 2016). Moreover, graph-
level clustering is a crucial yet challenging task, unlike node-
level clustering where we can derive extra supervision for
each node from their neighbors via propagation, graphs are
individual instances isolated from each other and thus we
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cannot directly aggregate information from other graphs. As
such, we are looking for an approach tailored to graph-level
clustering that can well learn clustering-friendly represen-
tations, and meanwhile capture discriminative clustering in-
formation from neighboring graphs.

Towards this end, this work proposes a general frame-
work called Graph-Level Contrastive Clustering (GLCC)
on multiple graphs. The key idea of GLCC is to exploit
the multi-granularity information to provide a global char-
acterization of graph instances. To achieve this goal effec-
tively, GLCC first constructs an adaptive affinity graph to in-
corporate neighbor knowledge, we then introduce two-level
contrastive learning (CL) based on the affinity graph, i.e.,
an instance-level CL and a cluster-level CL, respectively.
On the one hand, instance-level CL leverages graph Lapla-
cian based contrastive loss to learn clustering-friendly rep-
resentations for effective cluster assignments. On the other
hand, cluster-level CL incorporates neighbor information
of each sample to capture compact cluster representations
to achieve cluster-level consistency. Furthermore, neighbor-
aware pseudo-labels are generated to feed back the training
of representation learning, so that the clustering and repre-
sentation learning can be alternatively optimized to coopera-
tively supervise and mutually enhance each other. By incor-
porating this multi-granularity information, our experiments
show that it can largely improve the existing state-of-the-art
approaches on multiple real-life datasets. To summarize, the
main contributions of this work are as follows:
• General Aspects: To the best of our knowledge, this

could be the first work to investigate deep graph-level
clustering, which explores graph-level clustering on mul-
tiple graphs, different from existing works in studying
clustering among nodes given a single graph.

• Novel Methodologies: We propose a general framework
to explore instance- and cluster-level contrastive learning
based on the affinity graph. Instance-level CL aims to
learn clustering-friendly representations, while cluster-
level CL captures discriminative cluster representations.

• Multifaceted Experiments: We conduct comprehensive
experiments on various well-known datasets to demon-
strate the effectiveness of the proposed approach.

Related Work
Graph Neural Networks. GNNs are originally introduced
by (Gori, Monfardini, and Scarselli 2005) and are a typi-
cal class of deep neural networks that combine the topolog-
ical structure and associated features of a graph, thus pos-
sessing the powerful capability to process graph-structured
data. The basic idea is to learn the low-dimensional graph
representations through a recursive neighborhood aggrega-
tion scheme (Gilmer et al. 2017; Ju et al. 2022b; Luo et al.
2022a). The derived graph representations can be used to
serve various downstream tasks, such as node classifica-
tion (Kipf and Welling 2017), graph classification (Ju et al.
2022a), and graph clustering (Bo et al. 2020).
Deep Clustering. Our work is related to deep cluster-
ing, which has achieved impressive performance, benefit-
ing from the breakthroughs in deep learning. There has

been a surge of interest in employing deep neural net-
works to enhance clustering, which can be divided into two
main categories: (i) reconstruction based methods, and (ii)
self-augmentation based methods. For the first category, it
aims to leverage the auto-encoder (Rumelhart, Hinton, and
Williams 1985) paradigm to impose desired constraints on
feature learning in the latent space. For example, Deep Em-
bedded Clustering (DEC) (Xie, Girshick, and Farhadi 2016)
simultaneously learns feature representations and cluster as-
signments by minimizing the Kullback-Leibler divergence.
IDEC (Guo et al. 2017) improves the clustering by preserv-
ing the local structure of data generating distribution. For the
second category, the underlying concept is training the net-
works to achieve the consistency between original samples
and their augmented samples. For instance, IIC (Ji, Hen-
riques, and Vedaldi 2019) maximizes the mutual informa-
tion of paired dataset samples to keep a consistent assign-
ment probability. However, these methods are not tailored
to graph-level clustering, and show an inability to process
complex data structures, such as graph domains.
Graph Clustering. Another category of related work is
graph clustering. Benefiting from the strong capability of
GNNs in incorporating both node attributes and graph struc-
tures, GNNs have emerged as a powerful approach for graph
clustering, which aims to reveal the underlying graph struc-
ture and divides the nodes into several disjoint groups.
Similarly, most existing graph clustering approaches (Wang
et al. 2017, 2019; Pan et al. 2019; Fan et al. 2020; Bo
et al. 2020) also follow the framework of auto-encoder, in
which the graph auto-encoder (GAE) and the variational
graph auto-encoder (VGAE) are used to learn the graph-
structured data. For example, DAEGC (Wang et al. 2019)
utilizes an attention network to capture the importance of
the neighboring nodes, and further encodes the topologi-
cal structures and node contents to a compact representa-
tion based on GAE. The adversarially regularized graph au-
toencoder (ARGA) (Pan et al. 2019) enhances the cluster-
ing via introducing an adversarial learning scheme to learn
the graph embedding. Compared with existing methods for
node-level clustering, our work goes further and studies an
under-explored yet important graph-level clustering.

Problem Definition & Preliminary
Definition: Graph-level Clustering. A graph is denoted as
a topological graph G = (V, E ,X), where V is the set of
nodes, E is the set of edges. We use X ∈ R|V|×d to de-
note the node feature matrix, where d is the dimension of
features. Let G = {G1, · · · , GN} denote a set of unlabeled
graphs from K different categories. The goal of graph-level
clustering is to separate these graphs into K different clus-
ters such that the graphs with the same semantic labels can
be grouped into the same cluster.

Graph Neural Networks
We build upon graph neural networks (GNNs) to learn ef-
fective graph-level representations. GNNs are powerful ar-
chitectures by iteratively aggregating over local node neigh-
borhoods via message-passing mechanisms (Gilmer et al.
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Figure 1: Illustration of the proposed framework GLCC.

2017). Formally, at l-th layer of GNNs, the representation
of node v is updated as follows:

h(l)
v = U (l)

(
h(l−1)
v ,A(l)

({
h(l−1)
u

}
u∈N (v)

))
, (1)

where N (v) are neighbors to node v, U and A denote the
updating and aggregation functions. After L layers of iter-
ation, we combine all node representations to generate the
whole graph representation hG:

hG = READOUT({hL
v : v ∈ V}), (2)

where READOUT function can be achieved by directly us-
ing average, sum, or some adaptive pooling function.

Methodology
Overview
This paper proposes a general framework GLCC for graph-
level clustering as shown in Figure 1. At a high level, GLCC
aims to leverage the multi-granularity information to pro-
vide a global characterization of graph instances for effec-
tive clustering. Specifically, GLCC first constructs an adap-
tive affinity graph to link semantically similar samples, and
then introduces two-level contrastive learning based on the
affinity graph. On the one hand, GLCC conducts contrastive
learning coupled with graph Laplacian to learn clustering-
friendly representations from the instance-level view. On the
other hand, GLCC encourages the consistency between a
sample and its neighbors to capture compact cluster repre-
sentations from the cluster-level view. Moreover, predicted
neighbor-aware pseudo-labels are used to optimize the rep-
resentation learning process instead. The two steps can be
alternatively trained to collaborate with each other.

Adaptive Affinity Graph Construction
A fundamental perception is that similar graphs will tend to
involve similar properties. For example, in the biochemistry
domain, hexane and heptane that share the same functional
groups are prone to exhibit similar boiling points and wa-
ter solubility, thus easily assigned to the same cluster group.

Also, the relationship among graphs changes across prop-
erties, showing different clustering attributions. Naturally,
how to capture the relationship between different graphs is a
key factor affecting the clustering performance.

As such, we further propose an adaptive affinity graph
learning module to capture the relationship among differ-
ent graphs, such that the cluster information can be effi-
ciently propagated between similar graphs to incorporate
prior neighbor knowledge.

Formally, we construct an affinity graph GA = (VG, EG),
which is an undirected graph consisting of N graphs. Denote
VG = {vG1

, · · · , vGN
} the set of nodes, and E the set of

edges represented by the adjacency matrix A(t) such that:

Aij =

{
ehGi

·hGj
/τ , if hGj

∈ N k(hGi
)

0, otherwise
(3)

where i, j = 1, · · · , N , and τ is a temperature parameter.
The · symbol denotes the inner product. N k(z) are k neigh-
bors to the node representation z. Therein, the edge weight
is defined as the similarity between two neighbor nodes.

In this way, the adaptive affinity graph can be progres-
sively updated as the learning process, such that the connect-
ing graphs have similar properties and thus provide richer
prior knowledge for clustering. Moreover, the inclusion of
the affinity graph overcomes the deficiency of the indepen-
dence of multiple graphs, and each sample can aggregate and
derive extra supervision signals from neighboring graphs,
better serving the downstream clustering task.

Instance-level Graph Contrast
There is a key observation that the rows of the feature matrix
(i.e., instance representations of graphs) could be interpreted
as the clustering assignment probabilities when representa-
tion is projected into a K-dimensional embedding. There-
fore, an effective representation is beneficial to the clustering
process. In view of this, motivated by the prominent success
of contrastive learning, which possesses the powerful capa-
bility of learning discriminative representations from data

4393



themselves, we resort to this technique for better represen-
tation learning. The basic idea of contrastive learning is to
transform the data to generate two augmented views, and
compare pairs of instance representations to push away rep-
resentations from different samples while pulling together
those from transformations of the same sample.

To better draw together intra-cluster sample pairs and
avoid false negative samples in contrastive learning, we pro-
pose a novel graph Laplacian based contrastive learning cou-
pled with our adaptive affinity graph.

Technically, let D denote the diagonal degree matrix of
the adjacency matrix A of the affinity graph, in which di
represents the degree of node vGi , then the normalized sym-
metric graph Laplacian of GA can be defined as:

L = I −D− 1
2AD− 1

2 , (4)

where Lij = − Aij√
didj

, i ̸= j.

Given N original features H = {h1, ..., hN} derived
from GNNs followed by a instance head (i.e., multi-layer
perceptron, MLP), and the augmented features H′ =
{h′

1, ..., h
′
N} by randomly selecting one of the four graph

augmentations in (You et al. 2020), we expect that the origi-
nal node and the augmented neighbor node that are adjacent
on the affinity graph should be pulled closer, while non-
adjacent nodes should be pushed away. In other words, hi

should be close to h′
j if Aij > 0 while hi should be far away

from h′
j if Aij = 0. Assume that the dataset can be grouped

into several clusters, and we aim to increase the similarities
of intra-cluster and decrease those of inter-cluster.

Formally, we can define

Sintra =
∑

Lij<0

−LijS(hi, h
′
j),Sinter =

∑
Lij=0

S(hi, h
′
j)

(5)
as the total similarities of intra-cluster and inter-cluster re-
spectively, where S(hi, h

′
j) is defined in Eq. (3). Then, our

instance-level graph contrastive loss can be defined as:

LIGC = − 1

N

N∑
i=1

log

∑
Lij<0 −Lije

hi·h
′
j/τ∑

Lij=0 e
hi·h′

j/τ

 . (6)

As such, minimizing LIGC can achieve the goal that sam-
ples in the same cluster are more similar in some sense to
each other than to those in other clusters and further improve
the separableness of the whole dataset.

Cluster-level Graph Contrast
Apart from the instance representations derived from the
rows of the feature matrix, correspondingly, the columns of
the feature matrix could be interpreted as the clustering rep-
resentations. In other words, when we project the feature
matrix into a subspace whose dimensionality of the rows
equals the number of clusters, the columns can be treated
as the cluster distributions over instances.

In this way, conducting contrastive learning on clustering
representations can make the different cluster information
well capture the inherent characteristics. Nevertheless, tra-
ditional contrastive learning at the cluster-level solely treats

graphs as individual instances, and hence fails to establish
the relationship between the dimensions of the clustering
representations. Inspired by this motivation, we leverage the
affinity graph to satisfy that each node and its neighbors
should be closer with a similar cluster assignment.

Technically, we encourage that the original node should
be similar to the augmented view of the neighbor nodes that
are adjacent on the affinity graph. Similarly, consider the
projected feature matrix with a dimensionality of the clus-
ter number K, which is derived from GNNs followed by a
cluster head (i.e., MLP), then the columns of the projected
feature matrix are denoted as Z = [z1, ..., zK ]N×K , and
accordingly the column vectors of the augmented neighbor
matrix (by randomly sampling a neighbor of each node) are
Z̃

′
= [z̃

′

1, ..., z̃
′

K ]N×K , where the i-th column of the feature
matrix can be seen as a representation of the i-th cluster,
and the intuition is that all columns should differ from each
other. Hence we can adopt the idea of contrastive learning to
define our cluster-level graph contrastive loss as:

LCGC = − 1

K

K∑
i=1

log

 ezi·z̃
′
i/τ∑K

j=1 e
zi·z̃′

j/τ

−H(Z), (7)

where H(·) is the entropy function to prevent collapsing into
trivial outputs of the same cluster.

Neighbor-aware Pseudo Labeling
Note that although discriminative representations can lead to
better cluster assignments, representation learning and clus-
tering processes should collaborate and mutually enhance
each other. Towards this end, we propose to leverage the
confidence-based pseudo-labels generated by cluster assign-
ments to optimize representation learning instead.

Actually, we find that the well-trained model is prone to
make predictions with high confidence. In other words, the
predicted probability distribution approaches a one-hot vec-
tor. However, experiments show that these predictions have
low accuracy, making it hard to directly select the confi-
dent pseudo-labels. To that effect, we overcome these chal-
lenges by incorporating neighbor information from the affin-
ity graph. We believe that the cluster assignments of neigh-
bors could serve and rectify the biased pseudo-labels.

Specifically, we combine the neighbors’ cluster assign-
ments and the target sample itself pv , and adopt the oper-
ation of weighted summation to calculate the averaged as-
signment distribution pave, then the hard label of the target
sample yv is assigned by the maximum value of the averaged
assignment probability:

pave = pv +
∑

u∈N (v)
avu · pu

yv = argmax (pave) ,
(8)

where pv denotes the v-th row of the projected feature ma-
trix with the dimensionality of K, the weight avu is the nor-
malization of the edge weight Avu of the sample v and its
neighbor v. Finally, top-⌊rN⌋ samples with the minimum
entropy value of assignment distribution pave are selected as
subsets to optimize representation learning, where r is the
pseudo-label ratio for each dataset.
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Algorithm 1: Optimization Algorithm of GLCC
Input: Training graphs G = {G1, · · · , GN}, number of
clusters K, and temperature parameter τ
Output: Cluster assignments

1: Initializing affinity graph A and GNN parameter θ.
2: while not done do
3: Sample a mini-batch from G and their neighbors ac-

cording to A.
4: Sample one augmentation from (You et al. 2020).
5: // Step 1
6: Compute instance-level graph contrastive loss LIGC

by Eq. (6).
7: Compute cluster-level graph contrastive loss LCGC

by Eq. (7).
8: Update parameter θ by gradient descent to minimize

LGC by Eq. (10).
9: // Step 2

10: Generate pseudo-labels by Eq. (8).
11: Update parameter θ by gradient descent to optimize

instance representations by Eq. (9).
12: // Refine affinity graph
13: Update A according to Eq. (3).
14: end while

Once we have the pseudo-labels, we can in turn pro-
vide supervision signals for representation learning. Let i ∈
I = {1, ..., 2⌊rN⌋} be the index of ⌊rN⌋ samples and their
augmentations. Here we adopt supervised contrastive learn-
ing (Khosla et al. 2020):

LSup =
∑
i∈I

−1

|Q(i)|
∑

j∈Q(i)

log
exp (hi · hj/τ)∑

a∈A(i)

exp (hi · ha/τ)
, (9)

where A(i) = I \ {i}, Q(i) = {q ∈ A(i) : yq = yi} is the
set of indices of all positives distinct from i.

Training and Optimization
To effectively train our framework, we alternatively opti-

mize the following two steps until convergence.
Step 1. We jointly optimize instance- and cluster-level

contrastive learning, the overall objective can be written as:

LGC = LIGC + LCGC . (10)

Step 2. Then we depend on the generated neighbor-
aware pseudo-labels to optimize the instance representations
through Eq. (9).

After each iteration, we can utilize the learned instance
representations to refine the adaptive affinity graph, mak-
ing it progressive to involve more abundant neighbor knowl-
edge, which can better serve the clustering.

Experiments
Experimental Setup
Datasets. We conduct extensive experiments on two kinds
of datasets: biochemical molecule datasets and social net-
work datasets. For biochemical molecule datasets, we adopt

Datasets Category #Class #Graph #Node #Edge

DD Molecules 2 1178 284.32 715.66
AnchorQuery-10K Molecules 10 14774 39.80 86.69
AnchorQuery-25K Molecules 25 30692 39.45 86.30

IMDB-B Social Networks 2 1000 19.77 96.53
REDDIT-B Social Networks 2 2000 429.63 497.75

REDDIT-12K Social Networks 11 11929 391.41 456.89

Table 1: Statistics of datasets.

DD from TU datasets (Morris et al. 2020), and AnchorQuery
collected from AnchorQuery platform1 to test clustering
performance on large cluster number. Specifically, we con-
struct AnchorQuery-10K and AnchorQuery-25K datasets
with compounds generated from 10 and 25 types of mul-
ticomponent reactions (MCRs), respectively. The goal is to
distinguish reaction types of compounds through graph-level
clustering. For social network datasets, we adopt IMDB-B,
REDDIT-B, and REDDIT-12K datasets from TU datasets.
Dataset statistics are reported in Table 1.

Evaluation Metrics. We adopt three commonly used met-
rics to evaluate the clustering performance, including Nor-
malized Mutual Information (NMI) (Strehl and Ghosh
2002), clustering Accuracy (ACC) (Li and Ding 2006) and
Adjusted Rand Index (ARI) (Hubert and Arabie 1985). They
test different aspects of the clustering results. NMI and ACC
range in [0, 1], while ARI ranges in [−1, 1]. The larger value
reflects the better performance for all three metrics.

Baseline Methods. We compare our GLCC with two fam-
ilies of baselines: graph kernel methods and graph con-
trastive learning methods. The graph kernel methods include
Graphlet Kernel (Shervashidze et al. 2009), Shortest Path
(SP) Kernel (Borgwardt and Kriegel 2005) and Weisfeiler-
Lehman (WL) Kernel (Shervashidze et al. 2011). While
graph contrastive learning methods include InfoGraph (Sun
et al. 2020), GraphCL (You et al. 2020), CuCo (Chu et al.
2021), JOAO (You et al. 2021), RGCL (Li et al. 2022) and
SimGRACE (Xia et al. 2022). These baselines first learn
graph representations and then utilize K-means (MacQueen
1967) to cluster instances based on graph representations.
Note that there is a lack of graph-level clustering methods
for joint learning of representation learning and clustering.

Implementation Details. For a fair comparison with previ-
ous graph contrastive learning methods, we adopt Graph Iso-
morphism Network (GIN) (Xu et al. 2019) as the backbone
for all baselines. The number of GIN layers is 3, and the hid-
den dimension is set to 64. The batch size is set to 64 for DD,
IMDB-B, and REDDIT-B, and 256 for AnchorQuery-10K,
AnchorQuery-25K, and REDDIT-12K. The temperatures in
instance- and cluster-level graph contrastive losses are set to
0.1 and 1.0, respectively. For affinity graph construction, we
set neighbor number k = 5. Pseudo-label ratio r is set to
0.1. The perturbation ratio of graph augmentation is set to
0.1. The total number of training epochs is set to 100.

1http://anchorquery.csb.pitt.edu/
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Dataset DD AnchorQuery-10K AnchorQuery-25K IMDB-B REDDIT-B REDDIT-12K

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

Graphlet 0.004 0.579 -0.001 0.053 0.192 0.025 0.01 0.136 0.009 0.020 0.583 0.026 0.001 0.502 0.000 0.073 0.187 -0.004
SP 0.003 0.585 0.001 0.048 0.169 0.016 0.152 0.156 0.050 0.035 0.567 0.044 0.021 0.577 0.022 0.062 0.204 0.005
WL 0.006 0.586 0.002 0.033 0.162 0.010 0.159 0.163 0.068 0.023 0.53 0.003 0.089 0.576 0.021 0.092 0.189 0.044

InfoGraph 0.008 0.558 -0.006 0.072 0.238 0.036 0.178 0.181 0.061 0.041 0.538 0.005 0.016 0.508 0.000 0.045 0.205 0.003
GraphCL 0.019 0.573 -0.009 0.074 0.239 0.037 0.195 0.201 0.074 0.046 0.545 0.008 0.033 0.519 0.001 0.096 0.181 0.021
CuCo 0.012 0.562 -0.010 0.072 0.238 0.038 0.194 0.189 0.073 0.001 0.507 0.000 0.018 0.510 0.000 0.003 0.192 0.002
JOAO 0.012 0.578 -0.004 0.069 0.235 0.033 0.197 0.205 0.076 0.042 0.543 0.008 0.034 0.520 0.001 0.003 0.183 0.001
RGCL 0.014 0.565 -0.009 0.063 0.214 0.028 0.190 0.182 0.059 0.047 0.546 0.007 0.017 0.509 0.001 0.003 0.092 0.001
SimGRACE 0.001 0.589 0.003 0.068 0.226 0.031 0.189 0.186 0.074 0.049 0.559 0.007 0.024 0.513 0.001 0.062 0.210 0.005

Ours 0.024 0.607 0.023 0.076 0.247 0.043 0.209 0.228 0.083 0.081 0.665 0.106 0.092 0.676 0.087 0.105 0.226 0.058

Table 2: The clustering performance on six graph property prediction benchmarks. The best results are shown in boldface.

Experimental Results
We report the quantitative results of our approach against
competitive clustering methods in Table 2. According to the
results, we make the following observations:

• Overall, our framework GLCC achieves the best per-
formance against other graph kernel methods and graph
contrastive learning methods on all six datasets. In par-
ticular, GLCC outperforms the closest competitor on
IMDB-B with 8.2% and REDDIT-B with 9.9%, in terms
of ACC, which demonstrates the remarkable capability
of our framework for graph-level clustering.

• Kernel methods generally perform worse than graph con-
trastive learning methods on biomedical datasets, but the
situation is reversed on social datasets. Maybe the reason
is that traditional graph kernels are difficult to capture the
functional groups of molecules via handcraft substruc-
tures, but excel at exploring the path information of rela-
tionship connections in social network datasets.

• The performance of graph contrastive learning meth-
ods is generally inferior to our GLCC on IMDB-B and
REDDIT-B datasets, which suggests that only instance-
level contrastive learning fails to learn effective represen-
tations for clustering. In other words, cluster-level con-
trastive learning is essential to graph-level clustering.

• For datasets of large cluster numbers, like REDDIT-12K
and AnchorQuery-25K, GLCC also shows the superior-
ity over all the strong baselines, which proves the robust-
ness of our framework to various cluster numbers.

Ablation Study
We investigate the effectiveness of model components from
three aspects: instance- and cluster-level contrast, adaptive
affinity graph, and neighbor-aware pseudo label. The results
are summarized in Table 3.
Effect of Instance- and Cluster-level Contrast. M1 only
uses instance-level graph contrast, which is equivalent to
GraphCL (You et al. 2020). M2 only utilizes cluster-level
graph contrast to learn cluster assignments. While M3 com-
bines instance- and cluster-level contrastive learning. We
can see that either absence of instance-level contrast or
cluster-level contrast will damage the cluster performance,

Correlations IMDB-B AnchorQuery-25K
IGC CGC AAG NPL NMI ACC ARI NMI ACC ARI

M1
√

0.046 0.545 0.008 0.195 0.201 0.074
M2

√
0.059 0.631 0.071 0.191 0.206 0.069

M3
√ √

0.063 0.640 0.084 0.199 0.210 0.077
M4

√ √ √
0.068 0.653 0.092 0.202 0.217 0.079

M5
√ √ √ √

0.081 0.665 0.106 0.209 0.228 0.083

Table 3: Analysis of ablation study on IMDB-B and
AnchorQuery-25K datasets. IGC, CGC, AAG and NPL
correspond to Instance-level Graph Contrast, Cluster-level
Graph Contrast, Adaptive Affinity Graph and Neighbor-
aware Pseudo Label, respectively.

indicating that graph representation learning and clustering
can promote and benefit each other.
Effect of Adaptive Affinity Graph. The difference between
M4 and M3 lies in whether to use the adaptive affinity graph
or not. It can be observed that M4 achieves better results
than M3 on both datasets, which proves that extra neigh-
bor information provided by the affinity graph is beneficial
to learning better cluster assignments. Moreover, compact
neighbors can better increase the intra-cluster information,
and better serve the clustering process.
Effect of Neighbor-aware Pseudo Label. Comparing the
results of M4 and M5, we can draw the conclusion that the
neighbor-aware pseudo-labeling mechanism is essential and
can further improve the clustering accuracy by 1.0% on both
datasets, which demonstrates that effective supervision sig-
nals provided by pseudo-labels via cluster assignments can
in turn optimize the representation learning.

Sensitivity Analysis

Analysis of Neighbor Number. We first analyze the ef-
fect of the neighbor number k of the affinity graph on four
datasets. As shown in Figure 2 (Left), the performance im-
proves gradually when the number of neighbors increases
from 1 to 5. We deem that this improvement is mainly from
richer intra-cluster information provided by more neighbors,
which increases intra-cluster similarity while decreasing the
false-negative samples in contrastive learning. Nevertheless,
the too large neighbor number could hurt the performance
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Figure 2: Performance w.r.t. neighbor number on four
datasets and dataset size on REDDIT-12K.
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Figure 3: Analysis of neighbor-aware labeling mechanism
on AnchorQuery-25K.

owing to a decrease in the probability of two samples be-
longing to the same category as their distance increases,
which brings the noise to contrastive learning.
Effect of Cluster Sample Size. Here we sample subsets
of REDDIT-12K with various sizes. Specifically, we sam-
ple subsets with sizes from 2000 to 10000, while keeping
the original sample proportion among different categories.
We compare our model against six competitive baselines,
which are combinations of methods based on graph repre-
sentation learning {GraphCL, SimGRACE} and cluster al-
gorithms {K-means, spectral clustering (SC) (Shi and Ma-
lik 2000), agglomerative clustering (AC) (Gowda and Kr-
ishna 1978)}. The results are shown in Figure 2 (Right). It
can be observed that the performance of our GLCC drops
more slowly than other methods with the growth of dataset
size, indicating its robustness to various cluster sample sizes.
Moreover, three cluster algorithms {Kmeans, SC, AC} show
similar trends based on the same graph representation.

Analysis of Neighbor-aware Labeling Mechanism
To look deep into the effect of neighbor information for
pseudo-label selection, we report the distribution of entropy
(left) and accuracy (right) of learned cluster assignments
with respect to confidence degree in Figure 3. Specifically,
we consider the samples in five disjoint percentage intervals,
i.e., [0, 5), [5, 10), [10, 20), [20, 50), [50, 100), according
to the confidence of original (neighbor-aware) assignments.
[0, 5) means top-5% confidence. Then we compute the av-
eraged entropy and assignment accuracy of each group. As
we can see, the averaged entropy of original assignments
is less than 0.5, which means the original assignments pro-
duced by the well-trained model are close to one-hot vec-

Dataset Aug ND EP SG AM Random Selection

Ratio 0.1 0.05 0.1 0.2 0.4

DD GraphCL 0.562 0.563 0.579 0.571 0.562 0.573 0.571 0.559
GLCC 0.581 0.567 0.619 0.592 0.611 0.607 0.602 0.595

IMDB-B GraphCL 0.545 0.544 0.545 0.542 0.541 0.545 0.542 0.538
GLCC 0.663 0.642 0.595 0.662 0.648 0.665 0.646 0.624

RDT-12K GraphCL 0.183 0.187 0.175 0.179 0.177 0.181 0.175 0.166
GLCC 0.220 0.235 0.223 0.232 0.222 0.226 0.219 0.198

AQ-25K GraphCL 0.187 0.198 0.203 0.189 0.199 0.201 0.197 0.161
GLCC 0.193 0.219 0.234 0.203 0.217 0.228 0.212 0.168

Table 4: Analysis of Graph Augmentation. ND, EP, SG, and
AM correspond to node dropping, edge perturbation, sub-
graph, and attribute masking, respectively.

tors. However, their accuracy is not high, even though the
model assigns a class with a probability close to one. Thus,
we leverage the neighbor information from the affinity graph
to relieve assignment bias. It shows that neighbor-aware as-
signments achieve higher accuracy compared with original
assignments, at high confidence intervals, which proves the
effectiveness of the neighbor-aware labeling mechanism.

Discussion on Graph Augmentation
Here we study the effect of various graph augmentation
strategies and perturbation ratios on contrastive graph-
level clustering. We compare our model GLCC with
GraphCL (You et al. 2020) on four datasets. According to
the results shown in Table 4, the following observations can
be derived: (i) Graph augmentation is critical to our frame-
work. For various datasets, different augmentation strategies
exhibit pivotal effects, meanwhile the random selection of
four strategies achieves stable performance across various
datasets. (ii) Without collaborative learning of representa-
tion learning and clustering, GraphCL cannot obtain much
performance gain from different augmentation strategies.
Moreover, we find that more advanced augmentation meth-
ods, like RGCL (Li et al. 2022) based on invariant rationale
learning, fail to perform well in graph-level clustering, from
Table 2. (iii) The appropriate perturbation ratio can achieve
optimal cluster performance. These observations provide the
enlightenment that further exploration of graph augmenta-
tion strategies, based on our joint framework, may further
enhance graph-level clustering.

Conclusion
In this paper, we introduce a general framework GLCC
for graph-level clustering given multiple graphs, which
captures multi-granularity information to provide a global
characterization of graph instances. We first construct an
adaptive affinity graph to link semantically similar sam-
ples, while then introducing instance- and cluster-level con-
trastive learning based on the affinity graph. Moreover, we
predict neighbor-aware pseudo-labels to optimize the repre-
sentation learning process instead. Extensive experiments on
a range of well-known benchmark datasets prove the effec-
tiveness of the GLCC for graph-level clustering.
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